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MicroRNAs, DNA damage response and ageing
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Abstract Ageing is a multifactorial and integrated

gradual deterioration affecting the most of biological

process of cells. MiRNAs are differentially expressed

in the cellular senescence and play important role in

regulating of genes expression involved in features of

ageing. The perception of miRNAs functions in ageing

regulation can be useful in clarifying the mechanisms

underlying ageing and designing of therapeutic strate-

gies. The preservation of genomic integrity through

DNA damage response (DDR) is related to the process

of cellular senescence. The recent studies have shown

that miRNAs has directly regulated the expression of

numerous proteins in DDR pathways. In this review

study, DDR pathways, miRNA biogenesis and func-

tions, current finding on DDR regulations, molecular

biology of ageing and the role of miRNAs in these

processes have been studied. Finally, a brief explana-

tion about the therapeutic function of miRNAs in

ageing regarding its regulation of DDR has been

provided.
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Introduction

As a progressive inevitable process, ageing is a global

problem with increasing adverse impact on society

(Frenk and Houseley 2018). Despite the increasing

rate of age-related diseases such as cardiovascular

diseases, diabetes, osteoporosis, immunological dis-

eases, various neurodegenerative diseases, cancer,

progressive disability and loss of function, ageing has

caused a dramatic increase in health care cost in public

health system (Gabbianelli and Malavolta 2018).

Ageing completely influences every cellular and

biological function pathway. Several hallmarks are

explained for ageing, including a variety of molecular,

biochemical and metabolic alterations, genomic insta-

bility, telomere attrition, epigenetic alteration dereg-

ulated nutrient sensing, mitochondrial dysfunction,

stem cell exhaustion, cellular senescence, loss of

proteostasis and changed intercellular communica-

tion. Regarding the complex alterations occurred

during the ageing process, and the known function of

miRNAs in mediating complex and interlinked path-

ways, the key role of miRNAs has been highlighted in

ageing (Jung and Suh 2014). miRNAs are a large

group of non-protein coding RNAs with small size of

18–25 nucleotide long (Majidinia et al. 2018) and

supposed to control the expression of 60% of all

human mRNA molecules through degradation at the

posttranscriptional level and/or suppression of target

mRNAs translation (Majidinia and Yousefi 2016).

miRNAs are also demonstrated to be involved in the

regulation of various important components of DNA

damage response (DDR) as an intricate network

responsible to maintain the genome integrity and

instability (Majidinia and Yousefi 2016). This cross-

talk between DDR components and miRNAs plays

critical roles in the pathogenesis of ageing and ageing-

related diseases (Wan et al. 2011). Therefore, in this

review article, the role of interactions between

miRNAs and DDR signaling in ageing has been

reviewed (Fig. 1).

Molecular biology of ageing

Ageing is driven by fundamental and fascinating

processes influenced by the environmental factors

such as caloric or dietary restriction (DR) that delays

ageing and extends life. Indeed, extensive cross-talk

exists among these processes of organisms ageing.

Several major signaling pathways involved in life span

have been described: Insulin/IGF-like signaling (IIS)

pathway is one of the signaling pathways established

as regulator ageing in worms, insects and mammals,

thus any interruption or genetic down-regulation of

this signaling pathway such as deletion of IGF-1

receptor (Holzenberger et al. 2003) and deletion of

insulin/IGF-1 signaling intermediates can extend life

span (Selman et al. 2011). Also multiplex targets of IIS

pathway are Mechanistic target of rapamycin (mTOR)

complexes and forkhead box O (FOXO) family of

transcription factors involved in ageing. Indeed,

signaling by IIS pathway that starts with binding of

ligands such as insulin and insulin-like growth factor

can activate the PI3K/Akt/mTOR intracellular signal-

ing cascade and modulate ageing in mammals (Lam-

ming 2014). mTOR is the composition of two distinct

cellular multi-protein complexes (mTORC1 and

mTORC2) that basically modulate all aspects of

anabolic metabolism (López-Otı́n 2013). mTORC1

makes a response to the growth factors, energy status,

and cellular stress while is severely suppressed by

rapamycin. In this case, a genetic downregulation of

mTORC1 kinase activity leads to longevity in both

invertebrates (yeast, worm and flies) and mammals

(Bjedov et al. 2010; Harrison et al. 2009). It is also

reported that in mice with low values of mTORC1

activity, but with normal values of mTORC2 and in

mice with defective S6K1 (which is a major mTORC1

substrate) life span is increased (López-Otı́n 2013).

Also, it is indicated that the genetically suppress of

mTORC1 in C elegans through SKN-1/Nrf and DAF-

16/FoxO activate the protective genes and enhance

stress resistance and life span (Robida-Stubbs et al.

2012). FOXO transcription factors are the most

important effectors of IIS considered as a key regu-

lator of life span downstream of insulin/IGF-like

signaling while their function is inhibited by IIS

pathway (Martins et al. 2016). AMP kinas protein and

sirtuins are a nutrient sensor in a contrast performance

to insulin/IGF-like signaling and mTOR, representing

the nutrient deficiency and catabolism instead of
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nutrient abundance and anabolism (López-Otı́n 2013).

These proteins are involved in the regulation of

lifespan through an integrated signaling network.

AMP-activated protein kinase has several effects on

metabolism indicating the substantially shuts down

mTORC1 (Alers et al. 2012). Moreover, AMPK-

induced activation of Fox O/DAF-16, Nrf2/SKN-1,

and SIRT1 signaling pathways ameliorates the cellular

stress resistance and longevity. Furthermore, AMPK

suppresses the inflammatory responses by inhibition

of NF-jB signaling pathway. The related studies have

demonstrated that the responsiveness of AMPK sig-

naling has clearly been decreased through ageing

(Salminen and Kaarniranta 2012). Sirtuins protein

family in mammalian contains seven proteins (SIRT1-

SIRT7), acting in different cellular processes such as

histone de-acetylation and regulation of several tran-

scription factor. Accordingly, sirtuins have been

substantially studied as a potential anti-ageing protein

(Houtkooper et al. 2012). It has been reported that the

increment of protein deacetylase Sir2 could extend the

longevity in some lower organisms. Also, Sirt1 as the

Fig. 1 The interactions between various miRNAs and key components
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closest mammalian homologue Sir2 provides anti-

ageing activity evidence(s) in mammals (Herranz et al.

2010). Sirt1 as a family of mammalian class III histone

deacetylases are mainly a nuclear protein. It is

believed that sirt1s modulates the peroxisome prolif-

erator-activated receptor, Gamma Coactivator-1a
(PGC-1a) activity and mitochondrial biogenesis

(Tang 2016). Having pivotal role in apoptosis, mito-

chondria control a large number of different metabolic

and signaling pathways (Kroemer et al. 2007). There-

fore, it is highly evidenced that dysfunction of

mitochondria is associated with ageing (Bratic and

Larsson 2013). Also, a reduced nutrient availability

could enhance the mitochondria biogenesis via the

stimulation of sirtuin1 and its downstream effector

such as PPARc coactivetor-1a and AMPK (Reznick

et al. 2007). Moreover, these proteins are associated

with the regulation of mitochondria metabolism and

longevity. As a result, the reduced nutrient availability

and therapeutic strategies which keep low level energy

and nutrient without malnutrition are suggested to be

the main mechanism for extending longevity.

miRNAs: biogenesis and function

Since miRNAs are considered as a major regulator of

all cellular pathways, their biosynthesis and their

individual cellular functions must be tightly investi-

gated (Treiber et al. 2012). miRNAs are frequently

transcripted from two target genomic loci: (1) miRNA

genes that are located in intergenic regions (Kim and

Kim 2007), and (2) the transcripts of protein-coding

genes while residing in introns (Rodriguez et al. 2004).

Interestingly, the chromosome number 19,14,1 and X

of human have enormous number of miRNAs in the

intergenic regions (Ghorai and Ghosh 2014). Two

biosynthetic pathways for miRNAs are described.

Accordingly, the first step is mediated through the

canonical or Drosha/Dicer-dependent biosynthesis

pathway, in this pathway longer primary transcripts

(pri-miRNAs) are mainly generated by RNA poly-

merase II or III and the origin of these miRNAs are

usually in intergenic regions (Bartel 2009; Melton

et al. 2010). In the second step, a special type of

miRNAs known as mirtrons regulated through a non-

canonical pathway and their origin are within intron of

protein coding genes (Huang et al. 2013b; Rodriguez

et al. 2004). The canonical pathway for miRNA

biogenesis starts with the transcription of primary

miRNA (pri-miRNA) through RNA polymerase II.

pri-miRNAs which is folded into secondary structures

comprised of base-paired stem loop can be polyadeny-

lated and regulated through the transcription factors

(Majidinia and Yousefi 2016). In nucleus, pri-

miRNAs are detected by Drosha/DGCR8 enzymatic

complexes containing RNase III, an endonuclease

microprocessor for cutting double-strand RNA

(named as DROSHA) and their protein complex

DGCR8, and a double stranded RNA binding protein

(named as PASHA) (Lau et al. 2001). Obviously, the

function of drosha completely depends on the pasha

and the specific cross-regulation between them is

important for controlling of miRNA biogenesis

(MacFarlane and Murphy 2010). Indeed, the absence

of pasha in Drosophila and Caenorhabditis elegans

has been resulted in the accumulation of pri-miRNA in

cytoplasm (Lau et al. 2001). The initial processing of

pri-miRNA by Drosha/DGCR8 complex has led to the

production of * 70 nucleotide precursor miRNA

(pre-miRNA) which locally folded into the stable sec-

ondary hairpin loops with * 2 nucleotide 30-over-
hangs as a unique feature in RNase-III-mediated

cleavage (Denli et al. 2004; Lee et al. 2004) and

particularly detected by Exportin-5 and processing

enzyme dicer.

The next step pre-miRNAs are exported from the

nuclear envelope into cytoplasm by the nuclear export

receptor Exportin-5/Ran-GTP-dependent mechanism

(Terry et al. 2007). In eukaryotes, exportin-5 and Ran-

GTP are similar to a carrier molecule which receive

the pre-miRNA, inhibits nuclear degradation and

facilitates translocation into the cytoplasm (Bohnsack

et al. 2004). In cytosol, pre-miRNA is the second,

processed by other RNase III enzyme (named as

DICER1). Dicer1 binds the 30 overhang of pre-miRNA

through its two catalytic domains, also Transactivation

responsive RNA-binding protein (TRBP) cleaves pre-

miRNA into RNA duplexes of roughly * 22 nucleo-

tide length. TRBP elevates dicer1-mediated cleavage

in the subset of miRNAs (Devi et al. 2017). In next

step, the mature miRNA duplexes bind to argonaute

(Ago 1–4) protein and led to the production of

miRNA-induced silencing complex (RISC). Argonaut

proteins are highly conserved involved in pathways of

RNAi and miRNA. Argonaut proteins have two

conserved domains with capable of binding to RNA:

domain of PAZ which binds to the end of 30 single-
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strand miRNA and domain of PIWI which is similar to

ribonuclease H and interacts with miRNA at the end of

50 strand miRNA (Kanellopoulou and Monticelli

2008). In mammalian, Ago 2 is the main protein in

RISC complex associated with mRNA degradation or

translation suppression. In continuation, only one of

the mature guide miRNA strands (so-called miRNA-

5p) are associated with RISC and gives complemen-

tary sequences towards the target mRNA and often

finally binds to 30 end of UTR (Majidinia and Yousefi

2016). The other strand known as passenger miRNA

(called miRNA-3p, the star (*)-strand) is released

from RISC and degraded (Devi et al. 2017). In

noncanonical pathway, it also refers to Drosha-inde-

pendent/Dicer dependent pathway (mirtrons) as a

special type of miRNAs produced from bypass

Drosha/DGCR8 complex and spliced introns. After

exported to cytoplasm, mirtrons act like manner to

miRNA that is produced from the canonical pathway

(Filipowicz et al. 2008). miRNAs generally detect

their mRNA targets through their different sequences

called as a seed region (50 end miRNA; 2–7

nucleotides), finally the result of these processes are

‘‘gene silencing’’ led to mRNAs degradation or

translation repression of target mRNAs.

DNA Damage Response (DDR)

All living organisms are constantly threatened by

genotoxic agents in the environment, having the

potential of causing damage to genome which is led

to the defects in genome replication and transcription.

To overcome the challenge of maintaining the fidelity

of genome, cells depend on an intricate signaling

network, which systematically senses and reacts to

DNA damage, and depends on multiple factors that

determines the fate of cell (Jackson and Bartek 2009).

Based on the type of cell-damage, DDR network is

divided into two sections (1) ATM pathway which is

responsible for handling DSB 1 and (2) ATR pathway

which is responsible for handling single strand DNA

damage. Despite the separate discussion of these two

pathways, they are closely linked and act in conjunc-

tion (Awasthi et al. 2015; Maréchal and Zou 2013).

The first step in DDR is sensing the damage performed

by H2AX–MRN complex in ATM pathway and by

RPA-RAD9-RAD1-HUS1 complex (Mirza-Aghaz-

adeh-Attari et al. 2018; Yang et al. 2004). These

sensors are activated and affected by DDR transduc-

ers, ATM, ATR, CHK1 and 2 molecules (Manic et al.

2015). The function of these transducers and their

relation to sensors are further facilitated by DNA

mediators. These molecules which consist of BRCA1,

53BP1, MDC, TopBP1 and Claspin are also a getaway

for further interactions with other important signaling

pathways involved in cellular regulation and function

(Harte et al. 2014; Ibrahim et al. 2012; Mirza-

Aghazadeh-Attari et al. 2018). Finally, the collective

action of these mediators and transducers activate a

unique set of effector molecules, which determine the

fate of cell. A key effector in this regard is p53 and

multiple downstream signaling pathways that lead to

cell arrest, apoptosis, senescence, therefore, DNA

repair is initiated from this molecule (Williams and

Schumacher 2016). DNA repair is performed in

multiple manners with the involvement of a specific

set of enzymes and proteins with non-enzymatic

characteristics. DNA repair methods consist of NHEJ,

BER, HR and NER (Majidinia and Yousefi 2017).

Further, DDR can drive cells into checkpoint arrest,

which is mediated by the action of multiple cell cycle

proteins such as cyclins and cyclin dependent kinases

(CDKs), Wee1, CDC25 and other molecules (Alberts

et al. 2002). Cell can also enter to a permanent state

with no replication called senescence and mediated

again by some molecules involved in cell cycle

regulation and more specific molecules, such as p16

and p19 (Capparelli et al. 2012; Cascales et al. 2017).

An example for DNA damage: if damage is irreparable

and the sustenance of cell is distorted, apoptosis is

initiated and described as the programmed death of

cell. Many effector molecules are active in the process

of apoptosis, while many are regulated and affected by

DDR signaling (Norbury and Zhivotovsky 2004).

miRNAs mediate DDR regulation

Sensors/mediators/transducers of DDR

DNA damage sensors are the starting point of DDR,

and known as the targets of multiple regulatory

mechanisms including miRNAs. A study by Wang

et al. has found that miRNA-138 is able to directly

target the H2AX 30-untranslated region, causing a

reduced expression and foci formation and increased

tolerance to DNA damage led to the instability of
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chromosome. Further, this miRNA is able to inhibit

HR causing an increased sensitivity to DNA damage-

ing agents (Wang et al. 2011a). Similar inhibitory

effects on H2AX are seen in a study by Wei et al.

(when), where miRNA-328-3p increases the sensitiv-

ity to radiotherapy in small lung cancer cells (Maji-

dinia and Yousefi 2016). Another study has found that

miRNA-320 has increased the expression of cH2AX
and apoptosis related proteins in glioma cells, leading

to the increased sensitivity to radiation. This miRNA

also shows the inhibitory effects on the function of

Sirt1 (Li et al. 2018). Tsai YS has shown that miR-23a

has increased cH2AX and decreased the rates of DNA

double strand break in human oral fibroblasts. These

effects are found to be mediated by the regulatory

effect of this miRNA on FANCG (which is a Fanconi

anemia susceptibility gene) (Tsai et al. 2011). Galluzzi

et al. has found that a synthetic miRNA precursor (pre-

miR-630) is able to block DDR cascade phosphory-

lation, leading to a decreased phosphorylation of ATM

and H2AX and modulating the sensitivity of A549 to

cisplatin (Galluzzi et al. 2010). Yang et al. (2014) has

found that miR-138 is able to increase the sensitivity to

ionized radiation by increasing the expression of

cH2AX and inhibiting Sentrin/SUMO-specific pro-

tease 1. MRN complex is another DNA damage sensor

in DSB pathway of DDR. A study by Wu et al. (2015)

has found that SNPs in miRNA binding sites of each

one of the components, including MRE11, NBS1 and

RAD51 have significance function on the homologous

recombination repair process. Some SNPs are even

significantly associated with breast cancer. Farooqi

et al. (2015) has found similar significant variations in

30-UTR of NBS1 regarding prostate cancer. Moreover,

miRNA-488 is reported to increase the expression of

RPA and XPC, causing a net increase in nucleotide

excision repair (Fang et al. 2017). Zou et al. (2016) has

found that DNA replication could be halted by

targeting RPA1. Further, this miRNA could induce

DNA damage which is resulted from the induction of

cellular checkpoints. 9–1–1 complex (RAD9-RAD1-

HUS1) coupled with RAD17 is another sensor in the

single strand DNA damage response pathway. A study

by Tong et al. (2017) has found that miR-2425-5p is

able to regulate the rate of proliferation in muscle-

derived satellite cells by regulating the expression of

RAD9 homolog A acted as an inhibitor of cell

proliferation. Herzog et al. has studied the effects of

steroids in an ischemic model and found that steroids

are able to exert an anti-damage effect, mainly by

modulating miRNAs. One of the target miRNAs is

miR-375 targeted RAD1 and Bcl-2. Treatment with

steroids inhibited post-ischemic could increase these

two molecules (Herzog et al. 2017). Pandey et al. has

found that the overexpression of miRNA-15a-3p

downregulates RAD1 while enhancing the cell sur-

vival (Pandey et al. 2016). ATM is a DNA transducer

in DSB pathway extensively regulated by miRNAs.

Hoey et al. has shown that miRNA106a has increased

the resistance to radiation in prostate cancer cells by

upregulating ATM and downregulating lipopolysac-

charide-induced TNF-a factor (Hoey et al. 2018).

Similar effects are seen for miRNA-181a in promoting

gastric cancer (Zhang et al. 2014b). A study by

Mansour et al. has found that the overexpression of

miRNA-421 resulted in the reduced amounts of ATM

has caused a defective DNA repair and increased the

sensitivity to radiation (Mansour et al. 2013). Similar

results are shown for miRNA-26a by Guo et al. in

glioblastoma cell lines and for miRNA-18a by Song

et al. (2011), Guo et al. (2014). Saleh et al. (2017) has

found that the administration of Ibrutinib in chronic

lymphocytic leukemia has increased the expression of

tumor suppressors such as ATM and PTEN by

decreasing the amount of specific miRNAs such as

miR-22, miR-34a, miR-146b andmiR-181b. Guo et al.

(2013) has found that there is a clinically important

relation between the expression of ATM and the

hormonal status of breast cancer. It is shown that

Estrogen receptor a activates miR-18a and miR106a,

which negatively regulated the expression of ATM.

Fei et al. has found a function for miR-26b in

promoting apoptosis in Granulosa cells. Further

investigations have shown that this function is depen-

dent on the ability of this miRNA to target ATM

m-RNA at position 5555 led to a decreased ATM, and

increased DNA breakage and mightily to the increased

rates of apoptosis (Lin et al. 2012). Wang et al. has

shown that the important signaling cascades which

predispose cancer, such as Transforming growth

factor-b has utilized miRNAs in order to promote

malignant transformation. One of these miRNAs is

miR-181 which targets ATM and interfered with its

function (Wang et al. 2011b). Huang et al. has reported

that miRNA-103 and miRNA-107 have similar func-

tions in regulating ATM, and considered for increas-

ing sensitization to chemotherapy agents in a wide

range of cancer cell lines (Huang et al. 2013a). ATR is
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the counterpart of ATM in a single strand DNA

damage, and likewise, is in part regulated by miRNAs.

In an study by Wang et al. (when), miR-185 has

negatively regulated ATR expression, which resulted

in the inhibition of proliferation and increased rates of

apoptosis (Wang et al. 2013). Chang et al. has also

found that miRNA-3928 activates ATR by affecting

Dicer (Chang et al. 2012). Indeed, ATR has numerous

interactions with multiple molecules of DDR, includ-

ing polo-like kinases-4. A study by has shown that

miRNA-126 inhibits the functions of polo-like

kinases-4 including its interactions with ATR. This

miRNA inhibits the PLK-4/ATR/CHEK1 axis which

promoted proliferation in cancer cells (Bao et al.

2018). miRNAs can also be the means to regulate ATR

by other signaling pathways. STAT3 regulates ATR

by microRNA-383 shown in a study by liao et al. also

miRNA-383 decreases the level of ATR and promotes

an anti-apoptotic phenotype (Liao et al. 2015). The

Next major group of molecules involved in DDR with

links to miRNAs is DDR mediators. BRCA1 is

probably the most important mediator with wide

functions in multiple human pathologies, most notably

cancer (Mersch et al. 2015). Studies have shown that

the expression of BRCA1 is linked to multiple

regulators including miRNAs (Shariati-Kohbanani

et al. 2016). It is known that over 100 miRNAs are

linked to BRCA1 function, such as miRNA-146a,

miRNA-146-5p and miRNA-498 which repress

BRCA1 with important functions in the formation of

triple negative breast cancer cell lines (Garcia et al.

2011; Matamala et al. 2016; Petrovic et al. 2017).

Moreover, miRNAs namely miRNA-206 can deter-

mine how cell could coup with deficiency of BRCA1

(Wronski et al. 2016). Heyn et al. has found that

miRNA-335 has an important regulatory role on

BRCA1 by effecting its upstream signaling molecules

due to a direct relation between the expression of this

miRNA and transcription of BRCA1 (Heyn et al.

2011). Targeting of BRCA1 has been shown to have

potential clinical interests by Moskwa et al. showing

that miRNA-182 downregulates BRCA1, and sensi-

tizes cells to PARP inhibitors. Antagonizing the

effects of this miRNA has caused cancer cells to

experience a rapid gain of resistance to PARP

inhibitors (Moskwa et al. 2011) (Table 1).

Effectors of DNA repair

DNA repair is regulated bymultiple agents as miRNA.

A study by Zhang et al. has found that miRNA205 is a

determinant of radio-sensitivity, which exerted its

effects by inhibiting DNA repair via targeting zinc

finger E-box binding homeobox 1 and Ubc13 (Zhang

et al. 2014a). Mueller et al. has found that miRNA-99

regulates DDR and DNA repair by targeting SNF2H

that reduces DNA damage repair by abrogating the

function of BRCA1 (Mueller et al. 2013). Another

study by Di Francesco et al. has investigated that miR-

27a affects the rejoining kinetics of DSB in A549 cells

undergoing radiation (Di Francesco et al. 2013). Also,

miRNA-346 has a pro-cancer effect, increasing pro-

liferation and metastasis by downregulating XPC and

negatively affecting XPC/ERK/Snail/E-cadherin sig-

naling (Sun et al. 2016). Xie et al. has shown that

miRNA-192 inhibits NER by targeting two important

effectors as ERCC3 and ERCC4, resulting that the

carcinogenesis of hepatitis B could be mediated by

upregulating of this miRNA (Xie et al. 2011). Studies

have shown that SNPs in the miRNA binding domains

of genes and effective in NER can have significant

effects on DNA repair capacity and can be linked to

conditions such as age related cataracts and colorectal

cancer (Gu et al. 2016; Naccarati et al. 2012). BER is

another DNA repair method, which miRNAs have

regulatory functions on. It is shown that like other

repair pathways, SNPs in miRNA binding regions play

an important role in regulating BER, thus having

significant effects on progression of cancer (Pardini

et al. 2013). A study by Wang et al. found that

miRNA-149 targets DNA polymerase b in esophageal

cancer cell lines resulted in increased sensitivity to

cisplatin (Wang et al. 2018b). Further, Wang et al. has

found that miRNA-499 has the similar effect (Wang

et al. 2015). HR is also affected by miRNAs. One

important function of miRNAs in physiologic pro-

cesses is the inhibition of HR during G1 phase of cell

cycle. miRNA-98-5p affects HR by targeting RAD51

as a key mediator which is performed by the mediatory

effect of another miRNA (miRNA-152 that directly

regulated RAD51). MiRNA-98-5p has a global

inhibitory effect on other miRNAs, and contributed

to resistance toward chemotherapy by platinum agents

(Choi et al. 2014; Wang et al. 2018a). Cortez et al. has

found that miRNA-34a has increased the sensitivity of

lung cancer cells to radiation by targeting RAD51 and
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inhibiting HR (Cortez et al. 2015). Furthermore, Liu

et al. has suggested that miRNA-506 has the same

effect (Liu et al. 2015). Besides, Liu et al. has reported

that the regulatory effect of miRNA-590 is exerted via

the miR-590/Acvr2a axis, which directly affects

Rad51b. This axis has important applications in

preserving stabilization in embryonic stem cells (Liu

et al. 2014). Wang et al. has suggested that miRNA-96

downregulates the expression of REV1 and RAD51

led to the decreased efficacy of HR and increased

sensitivity to PARP inhibitors and cisplatin (Wang

et al. 2012). Gasparini et al. has found that miRNA-

155 has a protective role against radiation in breast

cancer by regulating RAD51, and patients could be

classified based on their levels of this miRNA to be

treated with radiation (Gasparini et al. 2014). Patel

Table 1 miRNAs involved in the highly coordinated network of DDR

MicroRNA miRNA targets Function in DDR References

miR-138 H2AX Reduced expression, foci formation, and

increased tolerance to DNA damage. Also

inhibit HR causing an increased sensitivity to

DNA damageing

Bao et al. (2018), Gao et al. (2017)

miR-328-

3p

miR-320 cH2AX, Sirtuin
Type 1

Increased the cH2AX, inhibitory effects on the

function of Sirt1

Garcia et al. (2011)

miR-23a cH2AX Increased the cH2AX and decreased rates of

DNA double strand break

Gasparini et al. (2014)

pre-miR-

630

ATM and

H2AX

Block DDR cascade phosphorylation, decreased

phosphorylation of ATM and H2AX

Ghorai and Ghosh (2014)

miR-138 cH2AX Increasing the expression of c-H2AX and

inhibiting Sentrin/SUMO-specific protease 1

Gu et al. (2016)

miR-488 RPA and XPC Causing a net increase in nucleotide excision

repair

Harrison et al. (2009)

miR-2425-

5p

RAD9 homolog

A

Inhibitor of cell proliferation Herranz et al. (2010)

miR-375 RAD1 and Bcl-

2

Increasing the expression of RAD1 and Bcl-2,

exert an anti-damage effect

Herzog et al. (2017)

miR-15a-

3p

RAD1, GTSE1,

NR2C1,

FKBP9 and

UBE2I

Elevated in stress response, downregulates

GTSE1 and RAD1 at the protein level and

improves cell survival

Heyn et al. (2011)

miR-106a ATM Upregulating ATM, decreased double strand

break

Hoey et al. (2018), Holzenberger et al. (2003)

miR-181a

miR-421 ATM Downregulating ATM, increased double strand

break

Houtkooper et al. (2012), Hu et al. (2017), Hu

et al. (2014), Huang et al. (2013b), Huertas and

Jackson (2009), Hühn et al. (2015), Ibrahim

et al. (2012)

miR-26a

miR-26a

miR-107

miR-103

miR-181

miR-18a

miR106a

miR-26b

miR-185 ATR Upregulating ATM, decreased double strand

break

Jackson and Bartek (2009)

miR-3928 ATR Activated ATR, decreased double strand break Joaquin and Watson (2003)

miR-383 ATR Decreased the level of ATR Jung and Suh (2014)
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et al. has also said that miRNA-15a and miRNA-16

downregulates B-lymphoma Moloney murine leuke-

mia virus insertion region-1as a key molecule in the

process of HR. The elevated levels of these miRNA

has caused a growing sensitivity to chemotherapy

agents and increased apoptosis in cancer cells (Patel

et al. 2017). CtIP is a molecule involved in DSB

resection in S/G2 which promotes HR (Huertas and

Jackson 2009). Hühn et al. has found that miRNA19

targets CtIP and reduces the amount of HR in a p53

dependent manner (Hühn et al. 2015). XRCC2 is

another molecule associated with HR and targeted by

miRNAs. Xu et al. has shown that miRNA-7 targets

this molecule and has anti-cancer effects by increasing

the expression of p21, caspase-3 and Bax. This

miRNA is downregulated in colorectal cancer speci-

mens (Xu et al. 2014). MDC1 is a DNA damage

mediator with functional characteristics in HR. Lee

et al. has noticed that miRNA-22 suppressed DNA

repair by targeting this molecule which is led to the

increased DNA damage accumulation and genome

instability (Lee et al. 2015). NHEJ is also affected by

miRNAs. A study by Hu et al. has found that miRNA-

21 mediates the radio resistance in specimens of

human cancer cells. This miRNA targets GSK3B,

which subsequently altered the function of CRY2/PP5

signaling and led to the increased rates of NHEJ and

HR (Hu et al. 2017).

Effectors of apoptosis and cell cycle checkpoint

As mentioned before, two important end points of

DDR are apoptosis and cell cycle arrest, which play

important roles in preventing cancer progression.

Various molecules are involved in upholding the cell

cycle checkpoints including E2F family of proteins

(Ren et al. 2002). A study by Lu et al. has found that

miRNA-136 targets E2F1 by NF-KB signaling, pro-

moting apoptosis and sensitivity to radiation (Lu et al.

2018). Qin et al. has preformed a study on multiple

myeloma cells and studied the effects of silencing

miRNA-137, finding that this inhibition is led to a

reduced sensitivity to chemotherapy agents. This

effect has been mediated by silencing of miRNA-

137 functions promoted cell cycle arrest by increasing

the expression of p53, and p21 (Qin et al. 2017). One

important signaling cascade which is effective in

preventing apoptosis and cell cycle arrest is c-Myc. A

study has found that miRNA-34c acted as a

downstream molecule in p38 MAPK/MK2 signaling,

and regulates the expression and function of c-Myc.

The inhibition of this miRNA resulted in abrogated S

phase arrest has led to an increased genomic instability

(Cannell et al. 2010). MiRNAs also affect apoptosis,

which is an important cellular function involved in

multiple physiologic and pathologic processes. Also,

miRNAs regulate apoptosis mediators such as caspase

molecules, XIAP, death receptor proteins such as Fas

and DR4,5, regulating other signaling pathways which

are closely linked to apoptosis such as NF-KB and

Smad signaling (Su et al. 2015). Rane et al. (2009) has

shown that these numerous interactions between

miRNAs and apoptosis proteins have significant

clinical applications due to their involvement in

resistance to anti-cancer medications (Lima et al.

2011).

Modulation of microRNA expression in DNA

damage response

Evidence has shown that DDR and its many transduc-

ers and mediators have important effects on miRNA

regulation. One important transducer regarding

miRNA regulation is ATM. After DSB, ATM is

activated and phosphorylates multiple substrates

including KH-type splicing regulatory protein

(KSRP), which after phosphorylation promotes the

processing of pre-miRNAs by Drosha-DGCR8 com-

plex (Liu and Liu 2011). Furthermore, it is suggested

that mutations in ATM has resulted a dysregulation of

miRNAs (Zhang et al. 2011). Wan et al. has shown

another role for ATM in regulating pre-miRNAs by its

interaction with AKT. It is shown that the phospho-

rylation of AKT by ATM is resulted in the phospho-

rylation of Nup153 and its increased interaction with

Exportin-5 has caused an increase in the release of pre-

miRNAs from the nucleus (Wan et al. 2013). It is

suggested that ATM utilizes miRNAs in order to

regulate DNA repair. Martin et al. has elicited that

CREB-miR-335-CtIP axis, which is downstream to

ATM signaling, plays an important role in the

selection of HR for certain lesions (Martin et al.

2013). ATR signaling is also important in mi-RNA

regulation. Tamminga et al. has shown that exposure

to radiation has caused an activation of ATR/ Rfx1

which increased the amounts of miR-709. This

miRNA targets Brother of Regulator of Imprinted
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Sites (BORIS), a protein involved in DNA methyla-

tion regulation (Tamminga et al. 2008). BRCA1 is to

effect the transcription of miRNAs. A study by Kawai

et al. has found that this is in part mediated by the

effect of BRCA1 on DROSHA microprocessor com-

plex and Smad3/p53/DHX9 signaling (Kawai and

Amano 2012). A study by Tanic et al. has shown that

BRCA1 regulates its effects in part by regulating the

amounts of miRNAs which has important roles to

affect NF-KB and TRAF2 signaling (Tanic et al.

2012). A study by Kumaraswamy et al. has found that

BRCA1 has increased the amount of miRNA-146a

attenuated EGFR expression. Further, the expressional

status of this miRNA has prognostic value, because

lower amounts are associated with positive lymph

node involvement and lower survival (Kumaraswamy

et al. 2015). Gao et al. has suggested that BRCA1 has

negatively regulated specific miRNAs which has pro-

oncotic functions. They found that the amount of

miRNA-155 which is commonly upregulated in breast

cancer has dependent on a negative regulatory effect

of FOXP3 on BRCA1, and there is a direct relation

between FOXP3 function and miRNA-155 amounts

(Gao et al. 2017). Chang et al. has shown that different

variants of BRCA1 has been resulted in significantly

different levels of miRNA-155 (Chang and Sharan

2012; Chang et al. 2011).

miRNA in the pathogenesis of ageing

Though alterations of multiple miRNA have been

linked to pathogenesis of ageing and its biology, the

role of miRNAs in ageing is under question. However,

Accumulating data has shown that miRNA can affect

pathways involved in life span (Chen et al. 2010). One

of common themes seen with senescence is changes in

miRNA expression similar to the mouse embryo

fibroblasts. It has been shown that miR-290 can induce

SA-beta-gal(?) cells and p16 that are the markers of

culture senescence (Pitto et al. 2009). DNA damage

response-induced senescence is mainly controlled by

p53 pathway. miRNAs stimulates the expression of

p53 or their downstream targets the control cellular

senescence. One of the p53 induced miRNA is miR-

34a which upregulated in accompaniment with p53 in

replicatively senescent fibroblasts (Chen et al. 2010).

Also, miR-34a can elevate senescence in hepatocel-

lular carcinoma cells through targeting c-Myc and

FoxM1 that both are associated with the activation of

telomerase reverse transcriptase (hTERT) transcrip-

tion as a catalytic subunit of enzyme telomerase to

avoid senescence (Xu et al. 2015). It has been found

that the overexpression of miR138 can be directly

induced a decrease in hTERT protein expression

through targeting 30-untranslated region. Indeed, in

some of cancer cell lines such as anaplastic thyroid

carcinoma (ATC), loss of miR138 expression may

have slightly role in hTERT protein expression

(Mitomo et al. 2008). Specific miRNAs have been

associated with Alzheimer’s disease and other neu-

rodegenerative disease. miR-144 is one of the impor-

tant miRNA which is involved in the ageing

progression. This miRNA is selectively increased in

the ageing brain compared to healthy aged brain

(Persengiev et al. 2011). A number of miRNAs are

associated with liver function and ageing. The use of

miRNA microarrays to detect specific miRNA expres-

sion in the livers of Ames dwarf mice, showing that

miR-27a represses the enzymes involved in biosyn-

thetic pathways such as ornithine decarboxylase. Also,

spermidine synthase might have role to extend the

longevity of Ames dwarf mouse (Bates et al. 2010).

The other feature of ageing is mitochondrial dysfunc-

tion. miRNAs may contribute to ageing through

interference intracellular pathways such as those

involving the mitochondrial antioxidative enzymes

superoxide dismutase 2 (SOD2) and thioredoxin

reductase 2 (Txnrd2) that play a key role in modulating

cellular senescence via detoxifying reactive oxygen

species (ROS). In ageing mesangial cells miR-335 and

miR-34a can inhibit the expression of SOD2 and

Txnrd2 by targeting 30-untranslated regions of these

genes. Indeed, an increment in the expression of miR-

335 and miR-34a has stimulated the premature ageing

of young mesangial cells by suppression of SOD2 and

Txnrd2 led to ROS production increasing (Bai et al.

2011). Cellular senescence can be supposed as a major

tumor suppressor mechanism and a form of irre-

versible growth arrest. Many studies have been

published in studying senescence triggered acutely

through a variety of stimuli including the expression of

tumor suppressor genes and suppression of key

cellular proteins such as B-Myb. B-Myb oncogene is

a transcription factor that regulates cell cycle progres-

sion and other genes involved in cell proliferation such

as c-Myc (Joaquin and Watson 2003; Sala 2005).

Interestingly, B-Myb can regulate senescence. This
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Table 2 miRNAs in the pathogenesis of ageing with target genes

miRNA Expression

levels

during

ageing

Target

tissue

Target genes Major finding Reference(s)

lin-4 Reduced C.

elegans

lin-14 Overexpressing lin-4 or reducing the activity of

lin-14 extended life span it is dependent on

the DAF-16 and HSF-1 transcription factors

Boehm and Slack

(2005)

miR-1 Increased Rat IGF-1, IGF-1R miR-1 and IGF-1 protein levels are correlated

inversely in models of cardiac hypertrophy

and failure

IGF-1 signal transduction cascade regulates

miR-1 expression through the Foxo3a

transcription factor

Elia et al. (2009),

Yu et al. (2008)

miR-320 Increased Rat Flk-1, IGF-1 and

IGF-1R

miR-320 impaired angiogenesis Wang et al.

(2009)

miR-206 Increased Rat IGF-1 miR-206 is involved in apoptotic cell death in

myocardial infraction

Shan et al. (2009)

miR-145b Reduced Human IGF-1R and IRS-1 down-regulation of insulin receptor substrate-1

plays a significant role in activity of miR145

La Rocca et al.

(2009a), La

Rocca et al.

2009b)

miR-140b Reduced Human IL-1 and IGFBP-1 Transfection of chondrocytes with ds-miR-140

down-regulated IL-1beta-induced ADAMTS5

expression and rescued the IL-1beta-

dependent repression of AGGRECAN gene

expression

Miyaki et al.

(2009), Tardif

et al. (2009)

miR-100 Reduced Human mTOR, FRAP1 Overexpression of the mir-22 repressed the

EVI1 oncogene

Nagaraja et al.

(2010)

miR-217 Increased Human SIRT1 miR-217 leads to an impairment in

angiogenesis via inhibition of SirT1 and

modulation of FoxO1 and endothelial nitric

oxide synthase acetylation

Menghini et al.

(2009)

miR-34ab Increased Human SIRT1, Notch1,

Notch2, Jagged1,

c-Met, and bcl2,

etc

FXR activation in these mice reversed the miR-

34a and SIRT1 level

Lee et al. (2010)

miR-199a Decreased Rat SIRT1 Sirt1 is also a direct target of miR-199a and is

responsible for downregulating prolyl

hydroxylase 2, required for stabilization of

Hif-1alpha,

Rane et al. (2009)

miR-132 Decreased Human SIRT1 Inhibitors of miR-132 decreased acetylated p65

and partially inhibited the production of IL-8

and MCP-1 induced by serum deprivation

Strum et al.

(2009)

let-7b Increased Mouse HMGA2 Hmga2 promotes neural stem cell self-renewal

by reducing p16Ink4a and p19Arf Expression

Nishino et al.

(2008)

let-7

family

Increased C.

elegans

hbl-1 DAF-12 and its steroidal ligand directly

activate promoters of let-7

Bethke et al.

(2009)

miR-145b Increased Human SOX2, OCT4, and

KLF4

Increased miR-145 expression inhibits hESC

self-renewal, represses expression of

pluripotency genes, and induces lineage-

restricted differentiation

Xu et al. (2009)

miR-

302–367

Decreased Human Cyclin-D1, Inhibition of miR-302 causes G1 phase arrest Card et al. (2008)
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transcription factor is suppressed through the interac-

tion with Rb-E2F complexes to B-Myb promoter, thus

loss of B-Myb expression can bring ageing. It has been

shown that miR-29 and miR-30 can regulate the

expression of B-Myb by often targeting to its 30UTR.
Indeed, these miRNAs directly play a major role in

suppress of B-Myb during senescence and regulating

Rb-driven cellular ageing (Martinez et al. 2011).

Senescence-associated miRNAs (SA-miRNAs) can

act as a barrier to cancer progression in vitro in vivo. It

is reported that miR-22 as a SA-miRNAs is overex-

pressed in senescent fibroblasts and epithelial cells

while its expression is decreased in various cancer cell

lines. Indeed, the upregulation of miR-22 stimulates

the growth repression and induction of a senescent

phenotype in both normal and cancer human-cell. It

seems that these effects are exerted through CDK6,

SIRT1 and Sp1 genes associated with the ageing

program in cancer cell that target miR-22 (Xu et al.

2011). On the whole, these studies have suggested that

senescence-associated miRNAs can modulate cellular

senescence. More interestingly, it is shown that

various miRNAs play critical function in ageing

through regulating some important signaling pathways

such as insulin/insulin-like growth factor (IGF) path-

way, target of rapamycin (TOR) pathway, Notch,

PI3K, p53, and inflammatory pathways (Table 2).

Therefore, with regards to the role of miRNAs in

ageing a new view could be open for the therapeutic

miRNA delivery in a variety of cancers and ageing-

related diseases.

miRNA’s therapeutic function in ageing based

on its regulation of the DDR

Multiple pathways are involved in the process of

ageing when DDR is one of the most important. A

study by Zou et al. (2018) has found that single

nucleotide polymorphisms in 30-terminal untranslated

region of XPC involved in nucleotide excision repair

has significant associations with nuclear Age-related

Cataract. Also, miRNAs have been regarded as targets

in enhancing DNA repair in keratinocytes. A study by

Joo et al. has found that the extract of Trichosanthes

kirilowii could enhance DDR in keratinocytes under-

going UVB radiation by downregulating the expres-

sion of miRNA-142-3p and upregulating the brain and

muscle aryl hydrocarbon receptor nuclear transloca-

tor-like protein-1 (BMAL1) (Joo et al. 2018). A study

by Boon et al. has found that micro-RNA-34a has

played an important role in age related decrease in

Table 2 continued

miRNA Expression

levels

during

ageing

Target

tissue

Target genes Major finding Reference(s)

miR-106a Increased Human p21, RARG Changes in miRNA expression might

contribute to phenotypic alterations of

senescent cells

Li et al. (2009)

miR-21 Increased Human TGF-bR2 miR-21 may play a role in ‘ ‘inflammageing’’,

thus affecting the risk of major age-related

diseases

Olivieri et al.

(2012)

miR-

146a/b

Increased Human IL-6 and IL-8 IL-1 receptor signaling initiates both miR-146a/

b upregulation and cytokine secretion

Bhaumik et al.

(2009)

miR-

130a-3p

Decreased Rat TNF-a, IL-10 miR-130a-3p desregulation may be associated

with elderly hip fracture-induced immune

disturbance

Chen et al.

(2018)

miR-29 Increased Mouse p85a, IGF-1 and B-

myb,

miR-29 suppressed the proliferation and

increased levels of cellular arrest proteins,

recapitulating ageing-induced responses in

muscle

Hu et al. (2014)

miR-18, -

19

Decreased Mouse CTGF and TSP-1 During ageing, decreased miR-18/19 and

increased CTGF and TSP-1 levels identify the

failure-prone heart

van Almen et al.

(2011)
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cardiac function. It is shown that PNUTS plays an

important role in regulating DDR. Inhibiting micro-

RNA-34a has been resulted in increased rates of

recovery after ischemic attacks and decreased fibrosis

(Boon et al. 2013).

Conclusion

Different miRNAs directly or indirectly affect the

expression of multiple components in DDR, as well as

the expression of genes involved in features of ageing.

Therefore, considering the importance of miRNAs in

pathogenesis of ageing and DDR, miRNAs are

emerging as key targets, which can be open new

views to be used by drugs to eradicate a variety of

cancers and ageing-related diseases. However, extra

studies are required in the cross-talks between

miRNAs, ageing and DDR, providing invaluable

information to the mechanism of miRNAs action in

these processes.
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